Kernel estimates for Schr\"odinger type operators with unbounded diffusion and potential terms

Research paper by Anna Canale, Abdelaziz Rhandi, Cristian Tacelli

Indexed on: 05 Jan '15Published on: 05 Jan '15Published in: Mathematics - Analysis of PDEs


We prove that the heat kernel associated to the Schr\"odinger type operator $(1+|x|^\alpha)\Delta-|x|^\beta$ satisfies the estimate $$k(t,x,y)\leq c_1e^{\lambda_0t}e^{c_2t^{-b}}\frac{(|x||y|)^{-\frac{N-1}{2}-\frac{\beta-\alpha}{4}}}{1+|y|^\alpha} e^{-\int_1^{|x|}\frac{s^{\beta/2}}{\sqrt{1+s^\alpha}}\,ds} e^{-\int_1^{|y|}\frac{s^{\beta/2}}{\sqrt{1+s^\alpha}}\,ds} $$ for $t>0,|x|,|y|\ge 1$, where $c_1,c_2$ are positive constants and $b=\frac{\beta-\alpha+2}{\beta+\alpha-2}$ provided that for $N>2,\,\alpha\geq 2$ and $\beta>\alpha-2$. We also obtain an estimate of the eigenfunctions of $A$.