Quantcast

Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms

Research paper by S. E. Boutiah, A. Rhandi, C. Tacelli

Indexed on: 24 Nov '17Published on: 24 Nov '17Published in: arXiv - Mathematics - Analysis of PDEs



Abstract

In this paper we prove that the heat kernel $k$ associated to the operator $A:= (1+|x|^\alpha)\Delta +b|x|^{\alpha-1}\frac{x}{|x|}\cdot\nabla -|x|^\beta$ satisfies $$ k(t,x,y) \leq c_1e^{\lambda_0 t+ c_2t^{-\gamma}}\left(\frac{1+|y|^\alpha}{1+|x|^\alpha}\right)^{\frac{b}{2\alpha}} \frac{(|x||y|)^{-\frac{N-1}{2}-\frac{1}{4}(\beta-\alpha)}}{1+|y|^\alpha} e^{-\frac{\sqrt{2}}{\beta-\alpha+2}\left(|x|^{\frac{\beta-\alpha+2}{2}}+ |y|^{\frac{\beta-\alpha+2}{2}}\right)} $$ for $t>0,\,|x|,\,|y|\ge 1$, where $b\in\mathbb{R}$, $c_1,\,c_2$ are positive constants, $\lambda_0$ is the largest eigenvalue of the operator $A$, and $\gamma=\frac{\beta-\alpha+2}{\beta+\alpha-2}$, in the case where $N>2,\,\alpha>2$ and $\beta>\alpha -2$. The proof is based on the relationship between the log-Sobolev inequality and the ultracontractivity of a suitable semigroup in a weighted space.