Quantcast

Isolation of the novel dirhodium(II/II) thiolate compound Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).

Research paper by Karn K Sorasaenee, José Ramón JR Galán-Mascarós, Kim R KR Dunbar

Indexed on: 04 Feb '03Published on: 04 Feb '03Published in: Inorganic Chemistry



Abstract

The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.