Quantcast

Iron activates NF-kappaB in Kupffer cells.

Research paper by Hongyun H She, Shigang S Xiong, Min M Lin, Ebrahim E Zandi, Cecilia C Giulivi, Hidekazu H Tsukamoto

Indexed on: 16 Aug '02Published on: 16 Aug '02Published in: American journal of physiology. Gastrointestinal and liver physiology



Abstract

Iron exacerbates various types of liver injury in which nuclear factor (NF)-kappaB-driven genes are implicated. This study tested a hypothesis that iron directly elicits the signaling required for activation of NF-kappaB and stimulation of tumor necrosis factor (TNF)-alpha gene expression in Kupffer cells. Addition of Fe2+ but not Fe3+ (approximately 5-50 microM) to cultured rat Kupffer cells increased TNF-alpha release and TNF-alpha promoter activity in a NF-kappaB-dependent manner. Cu+ but not Cu2+ stimulated TNF-alpha protein release and promoter activity but with less potency. Fe2+ caused a disappearance of the cytosolic inhibitor kappaBalpha, a concomitant increase in nuclear p65 protein, and increased DNA binding of p50/p50 and p65/p50 without affecting activator protein-1 binding. Addition of Fe2+ to the cells resulted in an increase in electron paramagnetic resonance-detectable.OH peaking at 15 min, preceding activation of NF-kappaB but coinciding with activation of inhibitor kappaB kinase (IKK) but not c-Jun NH2-terminal kinase. In conclusion, Fe2+ serves as a direct agonist to activate IKK, NF-kappaB, and TNF-alpha promoter activity and to induce the release of TNF-alpha protein by cultured Kupffer cells in a redox status-dependent manner. We propose that this finding offers a molecular basis for iron-mediated accentuation of TNF-alpha-dependent liver injury.