Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure

Research paper by Lauren E. Des Marteaux, Brent J. Sinclair

Indexed on: 01 Apr '16Published on: 30 Mar '16Published in: Journal of Insect Physiology


Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12 h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na+] and Na+ content in the first few hours of chilling actually increased. Patterns of Na+ balance suggest that Na+ migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K+] progressed gradually over 12 h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48 h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than G. pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na+], or [K+] balance during the first 12 h of chilling. Gryllus veletis better maintained balance of Na+ content and may therefore have greater tissue resistance to ion leak during cold exposure (which could partially explain faster chill coma recovery for that species).

Graphical abstract 10.1016/j.jinsphys.2016.03.007.jpg
Figure 10.1016/j.jinsphys.2016.03.007.0.jpg
Figure 10.1016/j.jinsphys.2016.03.007.1.jpg
Figure 10.1016/j.jinsphys.2016.03.007.2.jpg
Figure 10.1016/j.jinsphys.2016.03.007.3.jpg
Figure 10.1016/j.jinsphys.2016.03.007.4.jpg
Figure 10.1016/j.jinsphys.2016.03.007.5.jpg