Quantcast

Iodinated trihalomethanes formation in iopamidol-contained water during ferrate/chlor(am)ination treatment.

Research paper by Mian M Li, Tian-Yang TY Zhang, Bin B Xu, Chen-Yan CY Hu, Zheng-Yu ZY Dong, Zhen Z Wang, Yu-Lin YL Tang, Shui-Li SL Yu, Yang Y Pan, Qiming Q Xian

Indexed on: 22 Jan '21Published on: 22 Jan '21Published in: Chemosphere



Abstract

Iopamidol is a commonly used iodinated X-ray contrast media in medical field, and its residue in water can react with disinfectants to form highly toxic iodinated disinfection by-products (I-DBPs). This study investigated the degradation of iopamidol and formation of DBPs, especially iodinated trihalomethanes (I-THMs), during ferrate (Fe(VI)) pre-oxidation and subsequent chlor(am)ination under raw water background. It was found that iopamidol degradation efficiency in raw water by Fe(VI) at pH 9 could reach about 80%, which was much higher than that at pH 5 and pH 7 (both about 25%). With Fe(VI) dose increasing, iopamidol removal efficiency increased obviously. During the iopamidol degradation by Fe(VI), IO was the dominant product among all the iodine species. After pre-treated by Fe(VI), yields of THM4 and I-THMs can be reduced in subsequent chlor(am)ination. Besides, pH was a crucial factor for Fe(VI) pre-oxidition controlling DBPs. With the pH increasing from 5 to 9, the yield of THM4 kept increasing in subsequent chlorination but showed the highest amount at pH 6 in subsequent chloramination. The yield of I-THMs increased first and then decreased with the increase of pH in both subsequent chlorination and chloramination. I-THM concentrations in chlorinated samples were lower than chloraminated ones under acidic conditions but became higher under neutral and alkaline conditions. The total CTI of THMs during Fe(VI)-chloramination was higher than that during Fe(VI)-chlorination under neutral condition, but sharply decreased under alkaline conditions. In summary, Fe(VI)-chloramination subsequent treatment under alkaline conditions should be an effective method for iopamidol removal and DBP control. Copyright © 2021 Elsevier Ltd. All rights reserved.