Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance.

Research paper by Robert M RM Cooper, Lev L Tsimring, Jeff J Hasty

Indexed on: 02 Nov '17Published on: 02 Nov '17Published in: eLife


Horizontal gene transfer (HGT) plays a major role in the spread of antibiotic resistance. Of particular concern are Acinetobacter baumannii bacteria, which recently emerged as global pathogens, with nosocomial mortality rates reaching 19-54%. Acinetobacter gains antibiotic resistance remarkably rapidly, with multi drug-resistance (MDR) rates exceeding 60%. Despite growing concern, the mechanisms underlying this extensive HGT remain poorly understood. Here, we show bacterial predation by Acinetobacter baylyi increases cross-species HGT by orders of magnitude, and we observe predator cells functionally acquiring adaptive resistance genes from adjacent prey. We then develop a population-dynamic model quantifying killing and HGT on solid surfaces. We show DNA released via cell lysis is readily available for HGT and may be partially protected from the environment, describe the effects of cell density, and evaluate potential environmental inhibitors. These findings establish a framework for understanding, quantifying, and combating HGT within the microbiome and the emergence of MDR super-bugs.

More like this: