Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1.

Research paper by H H Tamemoto, T T Kadowaki, K K Tobe, T T Yagi, H H Sakura, T T Hayakawa, Y Y Terauchi, K K Ueki, Y Y Kaburagi, S S Satoh

Indexed on: 10 Nov '94Published on: 10 Nov '94Published in: Nature


Insulin receptor substrate-1 (IRS-1) is the major substrate of insulin receptor and IGF-1 receptor tyrosine kinases; it has an apparent relative molecular mass of 160-190,000 (M(r), 160-190K) on SDS polyacrylamide gel. Tyrosine-phosphorylated IRS-1 binds the 85K subunit of phosphatidylinositol 3-kinase which may be involved in the translocation of glucose transporters and the abundant src homology protein (ASH)/Grb2 which may be involved in activation of p21ras and MAP kinase cascade. IRS-1 also has binding sites for Syp and Nck and other src homology 2 (SH2) signalling molecules. To clarify the physiological roles of IRS-1 in vivo, we made mice with a targeted disruption of the IRS-1 gene locus. Mice homozygous for targeted disruption of the IRS-1 gene were born alive but were retarded in embryonal and postnatal growth. They also had resistance to the glucose-lowering effects of insulin, IGF-1 and IGF-2. These data suggest the existence of both IRS-1-dependent and IRS-1-independent pathways for signal transduction of insulin and IGFs.