Initial stages of copper electrocrystallization on polycrystalline platinum and glassy carbon in the presence of acetonitrile

Research paper by A. V. Rudnev, T. Zapryanova, E. B. Molodkina, A. I. Danilov, Yu. M. Polukarov

Indexed on: 01 Aug '08Published on: 01 Aug '08Published in: Russian Journal of Electrochemistry


The kinetics of formation of copper adlayer, three-dimensional nucleation, and the deposit growth on polycrystalline platinum and glassy carbon in the 0.5 M H2SO4 + 10 mM CuSO4 + (0–2) M acetonitrile (AcN) solutions at the cathodic overvoltages is studied using the methods of cyclic voltammetry and potentiostatic current transients on a ring-disc electrode. At [AcN] = 2 M, the process of formation of copper adatoms on platinum is significantly retarded. In the solutions with high contents of AcN, the processes of Cu+ ion production, the formation of their complexes with acetonitrile, hydrogen evolution, copper nucleation, and the deposit growth proceed in parallel. The contribution of any process to the overall current depends on the amount of adsorbed AcN at the surface of substrate and copper deposit and on the electrode potential. At [AcN] = 2 M, an increase in the cathodic overvoltage to 0.32 V leads to an abnormal increase in the current of Cu+ ion production on platinum, which is caused by insufficiently rapid formation of copper atoms in the reduction of Cu+(AcN)x complexes.