Influence of ion energy on damage induced by Au-ion implantation in silicon carbide single crystals

Research paper by Aurélie Gentils, Florence Linez, Aurélien Canizarès, Patrick Simon, Lionel Thomé, Marie-France Barthe

Indexed on: 07 May '11Published on: 07 May '11Published in: Journal of Materials Science


This article reports on the influence of the ion energy on the damage induced by Au-ion implantation in silicon carbide single crystals. 6H-SiC samples were implanted with Au ions at room temperature at two different energies: 4 and 20 MeV. Both Rutherford Backscattering spectrometry in channelling geometry (RBS/C) and Raman spectroscopy were used to probe the ion implantation-induced damage. Results show that the accumulated damage increases with the fluence up to the amorphization state. RBS/C data indicate that 4-MeV implantation induces more damage than 20-MeV implantation at a given fluence. This effect is attributed to nuclear collisions since the amount of damage is identical at 4 or 20 MeV when the fluence is rescaled in dpa. Surprisingly, Raman data detect more damage for 20-MeV implantation than for 4-MeV implantation at low fluence (below 1013 cm−2) where point defects are likely formed.