Quantcast

Infection-acquired versus vaccine-acquired immunity in an SIRWS model

Research paper by Tiffany Leung, Barry D Hughes, Federico Frascoli, Patricia T Campbell, James M McCaw

Indexed on: 09 Aug '17Published on: 09 Aug '17Published in: arXiv - Quantitative Biology - Populations and Evolution



Abstract

Despite high vaccine coverage, pertussis has re-emerged as a public health concern in many countries. One hypothesis posed for re-emergence is the waning of immunity. In some disease systems, the process of waning immunity can be non-linear, involving a complex relationship between the duration of immunity and subsequent boosting of immunity through asymptomatic re-exposure. We present and analyse a model of infectious disease transmission to examine the interplay between infection and immunity. By allowing the duration of infection-acquired immunity to differ from that of vaccine-acquired immunity, we explore the impact of the difference in durations on long-term disease patterns and prevalence of infection. Our model demonstrates that vaccination may induce cyclic behaviour, and its ability to reduce the infection prevalence increases with both the duration of infection-acquired immunity and duration of vaccine-acquired immunity. We find that increasing vaccine coverage, while capable of leading to an increase in overall transmission, always results in a reduction in prevalence of primary infections, with epidemic cycles characterised by a longer interepidemic period and taller peaks. Our results show that the epidemiological patterns of an infectious disease may change considerably when the duration of vaccine-acquired immunity differs from that of infection-acquired immunity. Our study highlights that for any particular disease and associated vaccine, a detailed understanding of the duration of protection and how that duration is influenced by infection prevalence is important as we seek to optimise vaccination strategies.