Independent component analysis of Gabor features for face recognition.

Research paper by Chengjun C Liu, H H Wechsler

Indexed on: 02 Feb '08Published on: 02 Feb '08Published in: IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council


We present an independent Gabor features (IGFs) method and its application to face recognition. The novelty of the IGF method comes from 1) the derivation of independent Gabor features in the feature extraction stage and 2) the development of an IGF features-based probabilistic reasoning model (PRM) classification method in the pattern recognition stage. In particular, the IGF method first derives a Gabor feature vector from a set of downsampled Gabor wavelet representations of face images, then reduces the dimensionality of the vector by means of principal component analysis, and finally defines the independent Gabor features based on the independent component analysis (ICA). The independence property of these Gabor features facilitates the application of the PRM method for classification. The rationale behind integrating the Gabor wavelets and the ICA is twofold. On the one hand, the Gabor transformed face images exhibit strong characteristics of spatial locality, scale, and orientation selectivity. These images can, thus, produce salient local features that are most suitable for face recognition. On the other hand, ICA would further reduce redundancy and represent independent features explicitly. These independent features are most useful for subsequent pattern discrimination and associative recall. Experiments on face recognition using the FacE REcognition Technology (FERET) and the ORL datasets, where the images vary in illumination, expression, pose, and scale, show the feasibility of the IGF method. In particular, the IGF method achieves 98.5% correct face recognition accuracy when using 180 features for the FERET dataset, and 100% accuracy for the ORL dataset using 88 features.