Quantcast

Independent coactivation of shoulder and elbow muscles

Research paper by Paul L. Gribble, D. J. Ostry

Indexed on: 01 Nov '98Published on: 01 Nov '98Published in: Experimental Brain Research



Abstract

 The aim of this study was to examine the possibility of independent muscle coactivation at the shoulder and elbow. Subjects performed rapid point-to-point movements in a horizontal plane from different initial limb configurations to a single target. EMG activity was measured from flexor and extensor muscles acting at the shoulder (pectoralis clavicular head and posterior deltoid) and elbow (biceps long head and triceps lateral head) and flexor and extensor muscles acting at both joints (biceps short head and triceps long head). Muscle coactivation was assessed by measuring tonic levels of electromyographic (EMG) activity after limb position stabilized following the end of the movements. It was observed that tonic EMG levels following movements to the same target varied as a function of the amplitude of shoulder and elbow motion. Moreover, for the movements tested here, the coactivation of shoulder and elbow muscles was found to be independent – tonic EMG activity of shoulder muscles increased in proportion to shoulder movement, but was unrelated to elbow motion, whereas elbow and double-joint muscle coactivation varied with the amplitude of elbow movement and were not correlated with shoulder motion. In addition, tonic EMG levels were higher for movements in which the shoulder and elbow rotated in the same direction than for those in which the joints rotated in opposite directions. In this respect, muscle coactivation may reflect a simple strategy to compensate for forces introduced by multijoint limb dynamics.