Quantcast

Impact of early dolomitization on multi-scale petrophysical heterogeneities and fracture intensity of low-porosity platform carbonates (‘middle’ Cretaceous, southern Apennines, Italy) ☆

Research paper by M. Giorgioni, A. Iannace, M. D'Amore, F. Dati, L. Galluccio, V. Guerriero, S. Mazzoli, M. Parente, C. Strauss, S. Vitale

Indexed on: 18 Mar '16Published on: 17 Mar '16Published in: Marine and Petroleum Geology



Abstract

Petrographic, petrophysical and fracture analyses were carried out on middle Cretaceous platform carbonates of the southern Apennines (Italy) that represent an outcrop analogue of the Val d’Agri and Tempa Rossa reservoirs of the Basilicata region. The studied outcrops, which are made of interlayered limestones and dolomites of inner platform environment, were selected to study the impact of dolomitization on reservoir properties and the control of dolomite texture on fracture development. Two types of dolomites – both formed during very early diagenesis – were found interlayered, at a meter scale, with micrite-rich limestones (mainly mudstones and wackestones). Dolomite A is fine-to medium crystalline and makes non-planar mosaics. Dolomite B is coarse-crystalline and makes planar-s and planar-e mosaics. The intercrystalline space of the planar-e subtype of dolomite B is either open or filled by un-replaced micrite or by late calcite or saddle dolomite cement. Dolomite A and dolomite B have similar average porosities of 3.7 and 3.1 % respectively, which are significantly higher than the average porosity of limestones (1.4%). Their poro-perm relationships are similar, with the notable exception of planar-e type B dolomites, which generally display higher permeability values.

Figure 10.1016/j.marpetgeo.2016.03.011.0.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.1.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.2.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.3.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.4.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.5.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.6.jpg
Figure 10.1016/j.marpetgeo.2016.03.011.7.jpg