Immunohistochemical identification and comparison of glial cell lineage in foetal, neonatal, adult and neoplastic human adrenal medulla

Research paper by Gaetano Magro, Sebastiano Grasso

Indexed on: 01 Jan '97Published on: 01 Jan '97Published in: The Histochemical journal


The differentiation of glial cells in developing, neonatal, adult and neoplastic human adrenal medulla has been studied immunohistochemically. From 8 to 28 weeks' gestational age, S-100 protein and its β-subunit revealed two different glial cell populations in adrenal glands, namely Schwann-like and sustentacular cells. Schwann-like cells were spindle-shaped cells forming a continuous layer around groups of sympathetic neuroblasts, often in contact with Schwann cells of nerve fibres entering neuroblastic groups. Sustentacular cells were round or oval cells with dendritic cytoplasmic processes; they were not associated with nerve fibres and mingled both with sympathetic neuroblasts and differentiating chromaffin cells. The developmental fate of Schwann-like cells was different from that of sustentacular cells. Schwann-like cells disappeared from the 28th week of gestational age, in association with the disappearance of sympathetic neuroblastic groups, and they were rarely found in neonatal and adult adrenal medulla. In contrast, sustentacular cells persisted between medullary chromaffin cells, and their number and dendritic cytoplasmic processes progressively increased from foetus to adult. In eight cases of primitive adrenal neuroblastic tumours of neonatal age (five undifferentiated neuroblastomas and three ganglioneuroblastomas), Schwann-like cells were found at the periphery of tumoral nests with a lobular growth pattern, while rare sustentacular cells were associated with neuroblasts. In two cases of adult phaeochromocytomas, only sustentacular cells were detected between chromaffin tumoral cells. Our findings suggest that the glial cell types and their distribution in primitive adrenal medulla tumours closely resemble those observed during development in the groups of adrenal sympathetic neuroblasts and in the clusters of chromaffin cells