Identification of Spoilage Marker Metabolites in Irish Chicken Breast Muscle Using HPLC, GC–MS Coupled with SPME and Traditional Chemical Techniques

Research paper by Dimitris Alexandrakis, Nigel P. Brunton, Gerard Downey, Amalia G. M. Scannell

Indexed on: 12 Jan '11Published on: 12 Jan '11Published in: Food and Bioprocess Technology


The aim of this investigation was to determine the metabolites of spoilage present on the surface of Irish chicken breast muscle in order to identify biomarkers of microbial spoilage and to verify the results of a previous study which suggested that the increase of free amino acids is the main spectral influence factor leading to the near and middle infrared detection of microbial spoilage. Irish-reared chicken breast muscle samples were individually packed and stored at 4 °C for 8 days under aerobic conditions. Microbiological analysis revealed that Pseudomonas spp. and Brochothrix thermosphacta were the predominant organisms (total viable counts (TVC), 4.24, 6.37 and 8.6 colony forming unity (CFU) g−1 for days 0, 4 and 8, respectively, Pseudomonas 3.2, 5.1 and finally, on day 8 7.4 log CFU g−1). Glucose and L-lactate concentrations decreased but the concentration of water-soluble polypeptides and amino acids increased over storage time. HPLC analysis of free amino acids revealed an increase of the total concentration but the composition of the profiles did not change over time. Headspace analysis detected the following volatile compounds: ethanol, acetone, ethyl acetate, methyl benzoate, heptane, C15, C12, methyl ethyl ketone, carbon disulphide, dimethyl sulphide, hexanal, and toluene. Of interest is the fact that detection of sulphides and an increase of ethanol, acetone, and ethyl acetate concentrations occurred from day 4 to 8. The increase in free amino acids throughout storage and the production of volatile compounds after day 4 require further investigation but are selected as potential biomarkers of microbial spoilage as they could be analytically detected before the accepted levels of sensory spoilage detection.