Identification of electrostatic two-stream instabilities associated with a laser-driven collisionless shock in a multicomponent plasma

Research paper by Youichi Sakawa, Yutaka Ohira, Rajesh Kumar, Alessio Morace, Leonard N. K. Doehl, Nigel Woolsey

Indexed on: 15 Oct '21Published on: 14 Oct '21Published in: arXiv - Physics - Plasma Physics


Electrostatic two-stream instabilities play essential roles in an electrostatic collisionless shock formation. They are a key dissipation mechanism and result in ion heating and acceleration. Since the number and energy of the shock-accelerated ions depend on the instabilities, precise identification of the active instabilities is important. Two-dimensional particle-in-cell simulations in a multicomponent plasma reveal ion reflection and acceleration at the shock front, excitation of a longitudinally propagating electrostatic instability due to a non-oscillating component of the electrostatic field in the upstream region of the shock, and generation of up- and down-shifted velocity components within the expanding-ion components. A linear analysis of the instabilities for a C2H3Cl plasma using the one-dimensional electrostatic plasma dispersion function, which includes electron and ion temperature effects, shows that the most unstable mode is the electrostatic ion-beam two-stream instability (IBTI), which is weakly dependent on the existence of electrons. The IBTI is excited by velocity differences between the expanding protons and carbon-ion populations. There is an electrostatic electron-ion two-stream instability with a much smaller growth rate associated with a population of protons reflecting at the shock. The excitation of the fast-growing IBTI associated with laser-driven collisionless shock increases the brightness of a quasi-monoenergetic ion beam.