Quantcast

Identification of a new cross-link and unique histidine adduct from bovine serum albumin incubated with malondialdehyde.

Research paper by David A DA Slatter, Nicholas C NC Avery, Allen J AJ Bailey

Indexed on: 23 Oct '03Published on: 23 Oct '03Published in: Journal of Biological Chemistry



Abstract

Malondialdehyde, acetaldehyde, acrolein, and 4-hydroxynonenal are all products of fatty acid oxidation found in the fatty streaks of atherosclerotic arteries due to a lack of antioxidants and an increase in glycation products. Previously identified cross-links derived from these molecules have nearly always required more than one molecule of each type, although this is physiologically less likely than a reaction involving a single molecule. Here we provide indirect but strong evidence for a malondialdehyde-derived cross-link requiring just one malondialdehyde molecule to link arginine and lysine, giving 2-ornithinyl-4-methyl(1epsilon-lysyl)1,3-imidazole following a 4-day incubation of albumin with 8 mm malondialdehyde. This cross-link was identified as its partial degradation product Nepsilon-(2-carboxyl,2-aminoethane)-Nepsilon-methanoyl-lysine by NMR and mass spectrometry. Analysis of plasma from treated diabetic patients revealed that one patient levels had as high as 0.46%, 0.67% of their lysine/arginine residues modified by this cross-link, although others had lower levels. Alkaline hydrolysis of serum albumin also revealed two acid-labile malondialdehyde adducts of histidine in significant quantities, the isomers 4- and 2-ethylidene-histidine. These constituted up to 0.93% of the histidines in treated diabetic patients. Although collagen is readily cross-linked by malondialdehyde, none of these particular products could be found in incubations of collagen with malondialdehyde.