Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab.

Research paper by Rifaquat R Rahman, Alhafidz A Hamdan, Rebecca R Zweifler, Han H Jiang, Andrew D AD Norden, David A DA Reardon, Srinivasan S Mukundan, Patrick Y PY Wen, Raymond Y RY Huang

Indexed on: 09 May '14Published on: 09 May '14Published in: Journal of Neuro-Oncology


While patients with recurrent glioblastoma receiving anti-angiogenic therapy demonstrate significant response rates, the benefit on patient survival is less clear. We assessed whether histogram analysis of diffusion weighted MRI can stratify for progression-free and overall survival. Baseline and 3-6 week post-treatment MRI exams of 91 patients with recurrent glioblastoma treated with bevacizumab were retrospectively evaluated. Histograms of apparent diffusion coefficient (ADC) within the volume of contrast enhancing and nonenhancing T2/FLAIR lesions were analyzed using curve-fit analysis. Overall survival (OS) and progression-free survival (PFS) were assessed using ADC parameters in a Cox proportional hazards model adjusted for clinical variables. Baseline ADC(L)/ADC(M) within nonenhancing T2/FLAIR volume (> or ≤0.64) can stratify OS (HR = 2.24, p = 0.002) and PFS (HR = 1.90, p = 0.005). %ADC(H) within enhancing T1+C volume (> or ≤25 %) can also stratify OS (HR = 0.59, p = 0.034) and PFS (HR = 0.56, p = 0.01). Stratification of patient survival can be improved by merging these two ADC parameters into a single combined ADC factor (HR = 0.17, p < 0.0001). The median OS ratio of patient groups stratified by this combined factor was 2.03, larger than median OS ratio when stratifying by either %ADC(H) within T1+C volume alone (1.3) or ADC(L)/ADC(M) within T2/FLAIR alone (1.86). ADC histogram analysis within both enhancing and nonenhancing components of tumor can be used to stratify for PFS and OS in patients with recurrent glioblastoma.

More like this: