Quantcast

Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification.

Research paper by Petra P Weitkamp, Klaus K Vosmann, Nikolaus N Weber

Indexed on: 14 Sep '06Published on: 14 Sep '06Published in: Journal of Agricultural and Food Chemistry



Abstract

Various medium- or long-chain alkyl cinnamates and hydroxycinnamates, including oleyl p-coumarate as well as palmityl and oleyl ferulates, were prepared in high yield by lipase-catalyzed transesterification of an equimolar mixture of a short-chain alkyl cinnamate and a fatty alcohol such as lauryl, palmityl, and oleyl alcohol under partial vacuum at moderate temperature in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica was the most effective biocatalyst for the various transesterification reactions. Transesterification activity of this enzyme was up to 56-fold higher than esterification activity for the preparation of medium- and long-chain alkyl ferulates. The relative transesterification activities found for C. antarctica lipase were of the following order: hydrocinnamate > cinnamate > 4-hydroxyhydrocinnamate > 3-methoxycinnamate > 2-methoxycinnamate approximately 4-methoxycinnamate approximately 3-hydroxycinnamate > hydrocaffeate approximately 4-hydroxycinnamate > ferulate > 2-hydroxycinnamate > caffeate approximately sinapate. With respect to the position of the hydroxy substituents at the phenyl moiety, the transesterification activity of C. antarctica lipase B increased in the order meta > para > ortho. The immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus demonstrated moderate and low transesterification activity, respectively. Compounds with inverse chemical structure, that is, 3-phenylpropyl alkanoates such as 3-(4-hydroxyphenyl)propyl oleate and 3-(3,4-dimethoxyphenyl)propyl oleate, were obtained by C. antarctica lipase-catalyzed transesterification of fatty acid methyl esters with the corresponding 3-phenylpropan-1-ols in high yield, as well.