Quantcast

Higher-order contributions and non-perturbative effects in the non-degenerate nonlinear optical absorption of direct-gap semiconductors

Research paper by W. -R. Hannes, T. Meier

Indexed on: 21 Dec '18Published on: 21 Dec '18Published in: arXiv - Physics - Mesoscopic Systems and Quantum Hall Effect



Abstract

The semiconductor Bloch equations for a two-band model including inter- and intraband excitation are used to study the nonlinear absorption of single and multiple light pulses by direct-gap semiconductors. For a consistent analysis the contributions to the absorption originating from both the interband polarization and the intraband current need to be included. In the Bloch equation approach theses contributions as well as different excitation pathways in terms of sequences of inter- and intraband excitations can be evaluated separately which allows for a transparent analysis, the identification of the dominant terms, and analyzing their dependence on the excitation conditions. In the perturbative regime, we obtain analytical expressions for the multi-photon absorption coefficients for continuous-wave excitation. These results are shown to agree well with numerical results for short pulses and/or finite dephasing and relaxation times and we confirm the previously predicted strong enhancement of two-photon absorption for non-degenerate conditions for pulsed excitation. We discuss the dependencies on the light frequencies, initial band populations, and the time delay between the pulses. The frequency dependence of the two-photon absorption coefficient for non-degenerate excitation is evaluated perturbatively in third-order. The higher-order contributions to the optical absorption include three- and four-photon absorption and show a rich frequency dependence including negative regions and dispersive lineshapes. Non-perturbative solutions of the Bloch equations demonstrate a strongly non-monotonous behavior of the intensity-dependent optical absorption for a single incident pulse and in a pump-probe set-up.