Quantcast

Hepoxilin A3 (HXA3) synthase deficiency is causative of a novel ichthyosis form.

Research paper by Santosh S Nigam, Maria-Patapia MP Zafiriou, Rupal R Deva, Nadja N Kerstin, Christoph C Geilen, Roberto R Ciccoli, Marco M Sczepanski, Maren M Lohse

Indexed on: 19 Dec '07Published on: 19 Dec '07Published in: FEBS Letters



Abstract

Non-bullous congenital ichthyosis erythroderma (NCIE) and lamellar ichthyosis (LI) are characterized by mutations in 12R-lipoxygenase (12R-LOX) and/or epidermal lipoxygenase 3 (eLOX3) enzymes. The eLOX3 lacks oxygenase activity, but is capable of forming hepoxilin-type products from arachidonic acid-derived hydroperoxide from 12R-LOX, termed 12R-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12R-HpETE). Mutations in either of two enzymes lead to NCIE or LI. Moreover, 12R-LOX-deficient mice exhibit severe phenotypic water barrier dysfunctions. Here, we demonstrate that 12R-HpETE can also be transformed to 8R-HXA(3) by hepoxilin A(3) (HXA(3)) synthase (12-lipoxygenase), which exhibits oxygenase activity. We also presented a novel form of ichthyosis in a patient, termed hepoxilin A(3) synthase-linked ichthyosis (HXALI), whose scales expressed high levels of 12R-LOX, but were deficient of HXA(3) synthase.