Quantcast

Hand posture and gesture recognition techniques for virtual reality applications: a survey

Research paper by K. Martin Sagayam, D. Jude Hemanth

Indexed on: 14 Dec '16Published on: 17 Nov '16Published in: Virtual Reality



Abstract

Abstract Motion recognition is a topic in software engineering and dialect innovation with a goal of interpreting human signals through mathematical algorithm. Hand gesture is a strategy for nonverbal communication for individuals as it expresses more liberally than body parts. Hand gesture acknowledgment has more prominent significance in planning a proficient human computer interaction framework, utilizing signals as a characteristic interface favorable to circumstance of movements. Regardless, the distinguishing proof and acknowledgment of posture, gait, proxemics and human behaviors is furthermore the subject of motion to appreciate human nonverbal communication, thus building a richer bridge between machines and humans than primitive text user interfaces or even graphical user interfaces, which still limits the majority of input to electronics gadget. In this paper, a study on various motion recognition methodologies is given specific accentuation on available motions. A survey on hand posture and gesture is clarified with a detailed comparative analysis of hidden Markov model approach with other classifier techniques. Difficulties and future investigation bearing are also examined.AbstractMotion recognition is a topic in software engineering and dialect innovation with a goal of interpreting human signals through mathematical algorithm. Hand gesture is a strategy for nonverbal communication for individuals as it expresses more liberally than body parts. Hand gesture acknowledgment has more prominent significance in planning a proficient human computer interaction framework, utilizing signals as a characteristic interface favorable to circumstance of movements. Regardless, the distinguishing proof and acknowledgment of posture, gait, proxemics and human behaviors is furthermore the subject of motion to appreciate human nonverbal communication, thus building a richer bridge between machines and humans than primitive text user interfaces or even graphical user interfaces, which still limits the majority of input to electronics gadget. In this paper, a study on various motion recognition methodologies is given specific accentuation on available motions. A survey on hand posture and gesture is clarified with a detailed comparative analysis of hidden Markov model approach with other classifier techniques. Difficulties and future investigation bearing are also examined.