Quantcast

Group 4 complexes of a tert-butylphosphine-bridged biphenolate ligand.

Research paper by Lan-Chang LC Liang, Yu-Lin YL Hsu, Sheng-Ta ST Lin

Indexed on: 25 Mar '11Published on: 25 Mar '11Published in: Inorganic Chemistry



Abstract

The coordination chemistry of group 4 complexes supported by the tridentate, dianionic biphenolate phosphine ligand that carries a phosphorus-bound tert-butyl group, 2,2'-tert-butylphosphino-bis(4,6-di-tert-butylphenolate) ([(t)Bu-OPO](2-)), is described. Metathetical reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with 2 or 1 equiv of TiCl(4)(THF)(2) selectively produce [(t)Bu-OPO]TiCl(2)(THF) (1a) and Ti[(t)Bu-OPO](2) (2a), respectively. Protonolysis of Ti(O(i)Pr)(4) with 2 or 1 equiv of H(2)[(t)Bu-OPO] cleanly generates 2a and [(t)Bu-OPO]Ti(O(i)Pr)(2) (3a), respectively. Complex 1a can alternatively be prepared from comproportionation of 2a with 1 equiv of TiCl(4)(THF)(2). Treatment of 1a with 2 equiv of NaO(t)Bu affords [(t)Bu-OPO]Ti(O(t)Bu)(2) (4a). In contrast, reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with ZrCl(4)(THF)(2) or HfCl(4)(THF)(2), regardless of stoichiometry of the starting materials employed, selectively give bis-ligated M[(t)Bu-OPO](2) [M = Zr (2b), Hf (2c)]. Comproportionation of 2b,c with MCl(4)(THF)(2) (M = Zr, Hf) leads to the formation of [(t)Bu-OPO]MCl(2)(THF) [M = Zr (1b), Hf (1c)], which, upon being treated with 2 equiv of NaO(t)Bu, generates [(t)Bu-OPO]M(O(t)Bu)(2)(THF) (4b,c). These synthetic results are markedly different from those obtained from analogous reactions employing a biphenolate phosphine ligand bearing a phosphorus-bound phenyl group ([Ph-OPO](2-)), highlighting a profound phosphorus substituent effect on complex conformation. The alkoxide complexes 3a and 4a-c are all active initiators for catalytic ring-opening polymerization of ε-caprolactone. To assess the potential phosphorus substituent effect on catalysis, [Ph-OPO]Ti(O(i)Pr)(2) (5a) was prepared, and its reactivity was examined. Interestingly, polymers prepared from 3a are characterized by low polydispersities with molecular weights that are linearly dependent on the monomer-to-initiator ratio, thus featuring a living system. The polydispersitiy indexes of polymers prepared from 5a, however, are relatively larger, indicative of the significance of the phosphorus-bound tert-butyl group in 3a in view of discouraging the undesirable transesterification.