Quantcast

Germ cell nuclear factor relieves cAMP-response element modulator tau-mediated activation of the testis-specific promoter of human mitochondrial glycerol-3-phosphate dehydrogenase.

Research paper by Mirjana M Rajkovic, Ralf R Middendorff, Marianne G MG Wetzel, Danijel D Frkovic, Sebastian S Damerow, Hans J HJ Seitz, Joachim M JM Weitzel

Indexed on: 01 Oct '04Published on: 01 Oct '04Published in: Journal of Biological Chemistry



Abstract

Mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is an essential component of the glycerol phosphate shuttle that transfers reduction equivalents from the cytosol into the mitochondrion. Within the testis, immunohistological analysis localized human mGPDH to late spermatids and to the midpiece of spermatozoa. The expression of human mGPDH is regulated by two somatic promoters, and here, we describe a third testis-specific promoter of human mGPDH. The usage of this testis-specific promoter correlates with the expression of a shortened mGPDH transcript of approximately 2.4 kb in length, which is solely detectable from testicular RNA. Within the testis-specific promoter, we detected a cAMP-response element (CRE) site at -51, which binds the testis-specific transcriptional activator CRE modulator tau (CREMtau) in electrophoretic mobility shift assays. This recognition site overlaps with a nuclear receptor binding half-site at -49, which binds the testis-specific transcriptional repressor germ cell nuclear factor (GCNF). Both factors compete for binding to the same DNA response element. Ectopic expression of CREMtau in HepG2 cells activated a promoter-driven luciferase construct in transient transfection experiments. Additional cotransfection of GCNF relieved this activity, suggesting a down-regulation of CREMtau-mediated activation by GCNF. This effect was preserved by introducing the CRE/nuclear receptor-binding element into a heterologous promoter context. Our data suggest a down-regulation of CREMtau-mediated gene expression by GCNF, which might be a general regulation mechanism for several postmeiotically expressed genes with a temporal expression peak during early spermatid development.