Quantcast

Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae).

Research paper by Myung Suk MS Rho, Kwang Pum KP Lee

Indexed on: 14 Oct '14Published on: 14 Oct '14Published in: Journal of Insect Physiology



Abstract

Geometric analysis of the nutritional regulatory responses was performed on an omnivorous mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) to test whether this beetle had the capacity to balance the intake of protein and carbohydrate. We also identified the pattern of ingestive trade-off employed when the insect was forced to balance the costs of over- and under-ingesting macronutrients. When allowed to mix their diet from two nutritionally imbalanced but complementary foods (protein-biased food: p35:c7 or p28:c5.6; carbohydrate-biased food: p7:c35 or p5.6:c28), beetles of both sexes actively regulated their intake of protein and carbohydrate to a ratio of 1:1. When confined to one of seven nutritionally imbalanced foods (p0:c42, p7:c35, p14:c28, p21:c21, p28:c14, p35:c7 or p42:c0), beetles over-ingested the excessive nutrient from these foods to such an extent that all the points of protein-carbohydrate intake aligned linearly in the nutrient space, a pattern that is characteristic of generalist feeders and omnivores. Under the restricted feeding conditions, males ate more nutrients but were less efficient at retaining their body lipids than females. Body lipid content was higher on carbohydrate-rich foods and was positively correlated with starvation resistance. Our results are consistent with the prediction based on the nutritional heterogeneity hypothesis, which links the nutritional regulatory responses of insects to their diet breadth and feeding ecology.