Quantcast

Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.

Research paper by Zhenli Z Zhao, Yongsheng Y Li, Haifang H Liu, Xiaoqiao X Zhai, Minjie M Deng, Yanpeng Y Dong, Guoqiang G Fan

Indexed on: 20 Oct '17Published on: 20 Oct '17Published in: PloS one



Abstract

Paulownia tomentosa is a fast-growing tree species with multiple uses. It is grown worldwide, but is native to China, where it is widely cultivated in saline regions. We previously confirmed that autotetraploid P. tomentosa plants are more stress-tolerant than the diploid plants. However, the molecular mechanism underlying P. tomentosa salinity tolerance has not been fully characterized. Using the complete Paulownia fortunei genome as a reference, we applied next-generation RNA-sequencing technology to analyze the effects of salt stress on diploid and autotetraploid P. tomentosa plants. We generated 175 million clean reads and identified 15,873 differentially expressed genes (DEGs) from four P. tomentosa libraries (two diploid and two autotetraploid). Functional annotations of the differentially expressed genes using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that plant hormone signal transduction and photosynthetic activities are vital for plant responses to high-salt conditions. We also identified several transcription factors, including members of the AP2/EREBP, bHLH, MYB, and NAC families. Quantitative real-time PCR analysis validated the expression patterns of eight differentially expressed genes. Our findings and the generated transcriptome data may help to accelerate the genetic improvement of cultivated P. tomentosa and other plant species for enhanced growth in saline soils.