Quantcast

Gasometric gradients between blood obtained from the pulmonary artery wedge and pulmonary artery positions in pulmonary arterial hypertension

Research paper by Ghaleb Khirfan, Mostafa K. Ahmed, Michael D. Faulx, Wael Dakkak, Raed A. Dweik, Adriano R. Tonelli

Indexed on: 08 Jan '19Published on: 08 Jan '19Published in: Respiratory Research



Abstract

Little is known on the pulmonary gradients of oxyhemoglobin, carboxyhemoglobin and methemoglobin in pulmonary arterial hypertension (PAH). We sought to determine these gradients in group 1 PAH and assess their association with disease severity and survival.During right heart catheterization (RHC) we obtained blood from pulmonary artery (PA) and pulmonary artery wedge (PAW) positions and used co-oximetry to test their gasometric differences.We included a total of 130 patients, 65 had group 1 PAH, 40 had pulmonary hypertension (PH) from groups 2–5 and 25 had no PH during RHC. In all groups, PAW blood had higher pH, carboxyhemoglobin and lactate as well as lower pCO2 than PA blood. In group 1 PAH (age 58 ± 15 years, 72% females), methemoglobin in the PAW was lower than in the PA blood (0.83% ± 0.43 vs 0.95% ± 0.50, p = 0.03) and was directly associated with the degree of change in pulmonary vascular resistance (R = 0.35, p = 0.02) during inhaled nitric oxide test. Oxyhemoglobin in PA (HR (95%CI): 0.90 (0.82–0.99), p = 0.04) and PAW (HR (95%CI): 0.91 (0.84–0.98), p = 0.003) blood was associated with adjusted survival in PAH.Marked differences were observed in the gasometric determinations between PAW and PA blood. The pulmonary gradient of methemoglobin was lower in PAH patients compared to controls and a higher PAW blood methemoglobin was associated with a more pronounced pulmonary vascular response to inhaled nitric oxide. Pulmonary artery and PAW oxyhemoglobin tracked with disease severity and survival in PAH.