Quantcast

Functional Nanoparticles-Coated Nanomechanical Sensor Arrays for Machine Learning-Based Quantitative Odor Analysis

Research paper by Kota Shiba, Ryo Tamura, Takako Sugiyama, Yuko Kameyama, Keiko Koda, Eri Sakon, Kosuke Minami, Huynh Thien Ngo, Gaku Imamura, Koji Tsuda, Genki Yoshikawa

Indexed on: 16 Aug '18Published on: 15 Aug '18Published in: ACS Sensors



Abstract

A sensing signal obtained by measuring an odor usually contains varied information that reflects an origin of the odor itself, while an effective approach is required to reasonably analyze informative data to derive the desired information. Herein, we demonstrate that quantitative odor analysis was achieved through systematic material design-based nanomechanical sensing combined with machine learning. A ternary mixture consisting of water, ethanol, and methanol was selected as a model system where a target molecule coexists with structurally similar species in a humidified condition. To predict the concentration of each species in the system via the data-driven approach, six types of nanoparticles functionalized with hydroxyl, aminopropyl, phenyl, and/or octadecyl groups were synthesized as a receptor coating of a nanomechanical sensor. Then, a machine learning model based on Gaussian process regression was trained with sensing data sets obtained from the samples with diverse concentrations. As a result, the octadecyl-modified nanoparticles enhanced prediction accuracy for water while the use of both octadecyl and aminopropyl groups was indicated to be a key for a better prediction accuracy for ethanol and methanol. As the prediction accuracy for ethanol and methanol was improved by introducing two additional nanoparticles with finely controlled octadecyl and aminopropyl amount, the feedback obtained by the present machine learning was effectively utilized to optimize material design for better performance. We demonstrate through this study that various information which was extracted from plenty of experimental data sets was successfully combined with our knowledge to produce wisdom for addressing a critical issue in gas phase sensing.

Figure 10.1021/acssensors.8b00450.1.jpg
Figure 10.1021/acssensors.8b00450.2.jpg
Figure 10.1021/acssensors.8b00450.3.jpg
Figure 10.1021/acssensors.8b00450.4.jpg
Figure 10.1021/acssensors.8b00450.5.jpg
Figure 10.1021/acssensors.8b00450.6.jpg
Figure 10.1021/acssensors.8b00450.7.jpg
Figure 10.1021/acssensors.8b00450.8.jpg