Fucoidan inhibits LPS-induced acute lung injury in mice through regulating GSK-3β-Nrf2 signaling pathway.

Research paper by De-Zhang DZ Zhu, Yan-Ting YT Wang, Yan-Li YL Zhuo, Kong-Juan KJ Zhu, Xiang-Zhen XZ Wang, Ai-Jie AJ Liu

Indexed on: 14 Jun '20Published on: 14 Jun '20Published in: Archives of Pharmacal Research


The purpose of this study was to investigate the protective effects of fucoidan on Lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. The mice were divided into the control, LPS, and LPS + fucoidan (20, 40, or 80 mg/kg) groups. LPS was given by intracheal instillation and fucoidan was given 1 h before LPS treatment. Myeloperoxidase (MPO) activity, malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione (GSH) contents, and inflammatory cytokine production were detected. The results showed that LPS-induced TNF-α, IL-1β, and IL-6 production, lung wet/dry (W/D) ratio, ROS, MDA content, and MPO activity were suppressed by fucoidan. The levels of SOD and GSH were increased by fucoidan. Meanwhile, LPS-induced nuclear factor kappa-B (NF-κB) activation was dose-dependently attenuated by fucoidan. Furthermore, fucoidan increased the expression of nuclear factor erythroid-2 related factor 2 (Nrf2), Glycogen synthase kinase3β (GSK-3β), and heme oxygenase (HO-1). In vitro, the results demonstrated that fucoidan or GSK-3β inhibitor significantly inhibited LPS-induced TNF-α production in A549 cells. And the inhibition of fucoidan on TNF-α production was blocked by Nrf2 siRNA. This study showed fucoidan protected mice against LPS-induced ALI through inhibiting inflammatory and oxidative responses via regulating GSK-3β-Nrf2 signaling pathway.