Quantcast

Frequency-Based Patrolling with Heterogeneous Agents and Limited Communication

Research paper by Tao Mao, Laura Ray

Indexed on: 07 Feb '14Published on: 07 Feb '14Published in: Computer Science - Multiagent Systems



Abstract

This paper investigates multi-agent frequencybased patrolling of intersecting, circle graphs under conditions where graph nodes have non-uniform visitation requirements and agents have limited ability to communicate. The task is modeled as a partially observable Markov decision process, and a reinforcement learning solution is developed. Each agent generates its own policy from Markov chains, and policies are exchanged only when agents occupy the same or adjacent nodes. This constraint on policy exchange models sparse communication conditions over large, unstructured environments. Empirical results provide perspectives on convergence properties, agent cooperation, and generalization of learned patrolling policies to new instances of the task. The emergent behavior indicates learned coordination strategies between heterogeneous agents for patrolling large, unstructured regions as well as the ability to generalize to dynamic variation in node visitation requirements.