Quantcast

Frameshift and double-amber mutations in the bacteriophage T4 uvsX gene: Analysis of mutant UvsX proteins from infected cells

Research paper by Myra O. Rosario, John W. Drake

Indexed on: 01 Jun '90Published on: 01 Jun '90Published in: Molecular & general genetics : MGG



Abstract

The bacteriophage T4 uvsX gene encodes a 43 kDa, single-stranded DNA-dependent ATPase, double-stranded DNA-binding protein involved in DNA recombination, repair and mutagenesis. Mutants of uvsX have a DNA-arrest phenotype and reduced burst size. Western blot immunoassay of UvsX peptides made by a number of amber mutants revealed amber peptides ranging from 25–32 kDa. Wild-type UvsX protein was also detected in lysates of cells infected with uvsX amber mutants, suggesting that their mutations are suppressed by translational ambiguity. We investigated the effects of mutations near the 5′ end of uvsX. A frameshift mutation was engineered at codon 33. Western immunoblots for UvsX protein demonstrated that the frameshift mutant expresses no detectable wild-type UvsX; instead, a 37 kDa reactive peptide was detected. In order to determine if this peptide represents truncated UvsX protein, the mutation was regenerated in the cloned uvsX gene and expressed in transformed Escherichia coli. Endopeptidase digestion of the 37 kDa protein from the cloned gene generated peptide fragments indistinguishable from those obtained from wild-type UvsX. A double-amber mutant of uvsX was also generated by oligonucleotide site-directed mutagenesis. No UvsX protein was detected in lysates of cells infected with the uvsX-am64am67 double mutant. Plaque size and sensitivity to UV inactivation for both the double-amber and the frame-shift mutants were indistinguishable from those of other uvsX mutants. Mutations in uvsY had no demonstrable effect on efficiency of plating or UV sensitivity of uvsX mutants. Thus, null mutants of uvsX are viable.