Formation of corundum megacrysts during H2O-saturated incongruent melting of feldspar: P–T pseudosection-based modelling from the Skattøra migmatite complex, North Norwegian Caledonides

Research paper by Kåre Kullerud, Pritam Nasipuri, Erling J. K. Ravna, Rune S. Selbekk

Indexed on: 17 May '12Published on: 17 May '12Published in: Contributions to mineralogy and petrology. Beitrage zur Mineralogie und Petrologie


Corundum megacryst-bearing rocks associated with the high-pressure migmatites of the Skattøra migmatite complex (SMC) belonging to the Nakkedal Nappe Complex, North Norwegian Caledonides, display a classical example of incongruent melting of plagioclase under water-saturated conditions. Petrography and micro-textures suggest that several centimetre long corundum megacrysts formed from the silicate melt along with amphibole (pargasite) and plagioclase (XAn ~ 0.47). The corundum-bearing leucosomes are rich in biotite compared to the other mafic units of SMC. Locally, margarite occurs in coronas around corundum megacrysts. Geochemically, the corundum-bearing rocks are enriched in Al, K, Rb and Ba and depleted in Fe, Mg and Ca compared to the leucogabbroic host rock. A P–T pseudosection of the leucogabbro indicates that feldspar breakdown and corundum formation occurred at temperatures >850 °C and pressure >1.2 GPa. The calculated equilibrium P–T of the corundum-bearing rock corresponds to 750–825 °C and 0.9–1.1 GPa. The P–T pseudosection of margarite indicates that margarite formed after cooling and decompression to P–T conditions corresponding to 600 °C at 0.5 GPa. Based on geochemical and mineral chemical analysis coupled with thermodynamic modelling, we suggest that formation of corundum occurred as a result of high-pressure incongruent melting of plagioclase in the presence of a K-, Rb- and Ba-rich external fluid. It is also suggested that the external fluid transported out portions of Ca, Fe and Mg, resulting in an increase of the peraluminousity of the melt and promoting further growth of corundum.