Forces produced by different nonconventional bracket or ligature systems during alignment of apically displaced teeth.

Research paper by Tiziano T Baccetti, Lorenzo L Franchi, Matteo M Camporesi, Efisio E Defraia, Ersilia E Barbato

Indexed on: 06 May '09Published on: 06 May '09Published in: The Angle orthodontist


To analyze the forces released by four types of passive stainless steel self-ligating brackets (SLBs), and by two nonconventional elastomeric ligature-bracket systems when compared with conventional elastomeric ligatures on conventional stainless steel brackets during the alignment of apically displaced teeth at the maxillary arch.An experimental model consisting of five brackets was used to assess the forces released by the seven different ligature-bracket systems with 0.012'' or 0.014'' superelastic nickel titanium wire in the presence of different amounts of apical displacement of the canine (ranging from 1.5 mm to 6 mm). Comparisons between the different types of bracket/wire/ ligature systems were carried out by means of ANOVA on ranks with Dunnett's post hoc test (P < .05).When correction of a misalignment greater than 3 mm is attempted, a noticeable amount of force for alignment is generated by passive SLBs and nonconventional elastomeric ligature-bracket systems, and a null amount of force is released in the presence of conventional elastomeric ligatures on conventional brackets.When minimal apical displacement is needed (1.5 mm), the differences in performance between low-friction and conventional systems are minimal. These differences become significant when correction of a misalignment of greater than 3.0 mm is attempted.