Fluorescent peptide dH3w: A sensor for environmental monitoring of mercury (II).

Research paper by Marialuisa M Siepi, Rosario R Oliva, Luigi L Petraccone, Pompea P Del Vecchio, Ezio E Ricca, Rachele R Isticato, Mariamichela M Lanzilli, Ornella O Maglio, Angela A Lombardi, Linda L Leone, Eugenio E Notomista, Giuliana G Donadio

Indexed on: 12 Oct '18Published on: 12 Oct '18Published in: PloS one


Heavy metals are hazardous environmental contaminants, often highly toxic even at extremely low concentrations. Monitoring their presence in environmental samples is an important but complex task that has attracted the attention of many research groups. We have previously developed a fluorescent peptidyl sensor, dH3w, for monitoring Zn2+ in living cells. This probe, designed on the base on the internal repeats of the human histidine rich glycoprotein, shows a turn on response to Zn2+ and a turn off response to Cu2+. Other heavy metals (Mn2+, Fe2+, Ni2+, Co2+, Pb2+ and Cd2+) do not interfere with the detection of Zn2+ and Cu2+. Here we report that dH3w has an affinity for Hg2+ considerably higher than that for Zn2+ or Cu2+, therefore the strong fluorescence of the Zn2+/dH3w complex is quenched when it is exposed to aqueous solutions of Hg2+, allowing the detection of sub-micromolar levels of Hg2+. Fluorescence of the Zn2+/dH3w complex is also quenched by Cu2+ whereas other heavy metals (Mn2+, Fe2+, Ni2+, Co2+, Cd2+, Pb2+, Sn2+ and Cr3+) have no effect. The high affinity and selectivity suggest that dH3w and the Zn2+/dH3w complex are suited as fluorescent sensor for the detection of Hg2+ and Cu2+ in environmental as well as biological samples.