Quantcast

Flat mount imaging of mouse skin and its application to the analysis of hair follicle patterning and sensory axon morphology.

Research paper by Hao H Chang, Yanshu Y Wang, Hao H Wu, Jeremy J Nathans

Indexed on: 08 Jul '14Published on: 08 Jul '14Published in: Journal of visualized experiments : JoVE



Abstract

Skin is a highly heterogeneous tissue. Intra-dermal structures include hair follicles, arrector pili muscles, epidermal specializations (such as Merkel cell clusters), sebaceous glands, nerves and nerve endings, and capillaries. The spatial arrangement of these structures is tightly controlled on a microscopic scale--as seen, for example, in the orderly arrangement of cell types within a single hair follicle--and on a macroscopic scale--as seen by the nearly identical orientations of thousands of hair follicles within a local region of skin. Visualizing these structures without physically sectioning the skin is possible because of the 2-dimensional geometry of this organ. In this protocol, we show that mouse skin can be dissected, fixed, permeabilized, stained, and clarified as an intact two dimensional object, a flat mount. The protocol allows for easy visualization of skin structures in their entirety through the full thickness of large areas of skin by optical sectioning and reconstruction. Images of these structures can also be integrated with information about position and orientation relative to the body axes.