Quantcast

First-principles study of full a-dislocations in pure magnesium

Research paper by T. Fan, L. Luo, L. Ma, B. Tang, L. Peng, W. Ding

Indexed on: 06 Aug '14Published on: 06 Aug '14Published in: Journal of Applied Mechanics and Technical Physics



Abstract

Full a-dislocations on the (0001) basal plane, \((10\bar 10)\) prismatic plane, and \((10\bar 11)\) and \((10\bar 12)\) pyramidal planes in pure magnesium are investigated by using the Peierls-Nabarro model combined with generalized stacking fault (GSF) energies from first-principles calculations. The results show that the \(\left( {10\bar 11} \right)\left\langle {11\bar 20} \right\rangle\) and \(\left( {10\bar 12} \right)\left\langle {11\bar 20} \right\rangle\) slip modes have nearly the same GSF energy barriers, which are obviously larger than the GSF energy barriers of the \(\left( {0001} \right)\left\langle {11\bar 20} \right\rangle\) and \(\left( {10\bar 10} \right)\left\langle {11\bar 20} \right\rangle\) slip modes. For both edge and screw full dislocations, the maximum dislocation densities, Peierls energies, and stresses of dislocations on the \((10\bar 10)\), (0001), \((10\bar 11)\), and \((10\bar 12)\) planes eventually increase. Moreover, the Peierls energies and the stresses of screw full dislocations are always lower than those of edge full dislocations for all slip systems. Dislocations on the \((10\bar 11)\) and \((10\bar 12)\) pyramidal planes possess smaller core energies, while the \((10\bar 10)\) prismatic plane has the largest ones, implying that the formation of full dislocations on the \((10\bar 10)\) plane is more difficult.