Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest.

Research paper by J Paulo JP Macedo, Jorge J Pereira, João J Faria, Júlio C M JCM Souza, J Luis JL Alves, José J López-López, Bruno B Henriques

Indexed on: 30 Jan '19Published on: 30 Jan '19Published in: Computer methods in biomechanics and biomedical engineering


The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2 mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. On vertical loading, maximum von Mises stresses were recorded at 6-7 MPa for trabecular bone while values ranging from 73 up to 118 MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21 MPa for trabecular bone while values at 150 MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2 MPa while von Mises stress values at 15 MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5 MPa, while von Mises stress values at 35 MPa were recorded for >99.4vol.% cortical bone. Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.