Quantcast

Finite atomic lattices and resolutions of monomial ideals

Research paper by Sonja Mapes

Indexed on: 07 Sep '10Published on: 07 Sep '10Published in: Mathematics - Commutative Algebra



Abstract

In this paper we primarily study monomial ideals and their minimal free resolutions by studying their associated LCM lattices. In particular, we formally define the notion of coordinatizing a finite atomic lattice P to produce a monomial ideal whose LCM lattice is P, and we give a complete characterization of all such coordinatizations. We prove that all relations in the lattice L(n) of all finite atomic lattices with n ordered atoms can be realized as deformations of exponents of monomial ideals. We also give structural results for L(n). Moreover, we prove that the cellular structure of a minimal free resolution of a monomial ideal M can be extended to minimal resolutions of certain monomial ideals whose LCM lattices are greater than that of M in L(n).