Quantcast

Feedback light apparatus and method for use with an electrosurgical instrument

Imported: 24 Feb '17 | Published: 13 Jan '04

Scott D. Wampler, David C. Yates, Trevor W. V. Speeg, Jeffrey J. Vaitekunas, Vance V. Van Drake, III, Ryan Niezgoda

USPTO - Utility Patents

Abstract

The present invention relates, in general, to electrosurgical instruments and, more particularly, to a feedback light used in cooperation with an electrosurgical instrument. The present invention further comprises first and second moveable jaws. A first electrode is housed within the first moveable jaw and a second electrode is housed within the second moveable jaw, where the electrodes are connectable to a power source for providing an electric current between the electrodes. The present invention further comprises a feedback light connectable to a first lead and a second lead in order to form a second circuit, where the second circuit is adjacent to the first circuit in order to facilitate capacitive coupling between the first and second circuits in order to light a feedback light.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings in which:

FIG. 1 is a cross sectional view of the jaws of the prior art bipolar graspers, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;

FIG. 2 is a perspective view of an endoscopic bipolar tissue grasper in accordance with the present invention shown with an associated electrosurgical current generating unit and connector table;

FIG. 3 is an enlarged perspective view of the distal end of the endoscopic bipolar tissue grasper of FIG. 2, showing the jaw members in greater detail;

FIGS. 4

a-c are top (FIG. 4

a) and side (FIGS. 4

b and

c) views of the distal end of the graspers shown in FIG. 3, in partial cross-section to show the actuation mechanism for moving the grasper jaws between the closed (FIG. 4

b) and open (FIG. 4

c) positions;

FIG. 5 is a cross-sectional view of the grasper jaws taken along line

5

5 of FIG. 4

b;

FIG. 6 is a cross-sectional view of the jaws of the inventive bipolar tissue graspers, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;

FIG. 7 is a perspective of an alternate embodiment of the present invention, a bipolar forceps in coagulation mode;

FIG. 8 is a perspective magnified view of the jaws illustrated in FIG. 7;

FIG. 9 illustrates the instrument of FIG. 7 in its closed position;

FIG. 10 illustrates the instrument of FIG. 7 in its scissors mode, jaws open;

FIG. 11 is a perspective magnified view of the jaws illustrated in FIG. 10;

FIG. 12 is a cross sectional view of jaws from a bipolar instrument having offset opposed electrodes in accordance with the present invention;

FIG. 13 is a side plan view of an alternate embodiment of a combination grasping/cutting instrument in accordance with the present invention;

FIG. 14 is a cross-sectional view of the jaws of the instrument illustrated in FIG. 13;

FIG. 15 is a side plan view of an instrument according to the present invention incorporating a ratchet handle;

FIG. 16 is a side plan view of one half of an instrument in accordance with the present invention with detents and blade actuation improvements;

FIG. 17 is a top sectional view taken from the part of FIG. 16;

FIG. 18 is an alternate top sectional view taken from the part of FIG. 16;

FIG. 19 is a side sectional view of the knife from the instrument illustrated in FIG. 16;

FIG. 20 is a top sectioned view of the jaw from the instrument illustrated in FIG. 16, showing that the jaw is curved;

FIG. 21 illustrates an instrument in accordance with the present invention showing the connector and wire layout for a bi-polar instrument;

FIG. 22 is a perspective view of an electrosurgical instrument having a feedback light in accordance with the present invention shown with an associated electrosurgical current generating unit and connector table;

FIG. 23 is an enlarged perspective view of the distal end of the electrosurgical instrument having a feedback light of FIG. 22, showing the jaw members in greater detail;

FIGS. 24-26 are top (FIG. 24) and side (FIGS. 25 and 26) views of the distal end of the jaws shown in FIG. 23, in partial cross-section to show the actuation mechanism for moving the jaws between the closed (FIG. 25) and open (FIG. 26) positions and the accompanying feedback light;

FIG. 27 illustrates an electrical schematic of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 28 illustrates an electrical schematic of an alternated electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 29 is a cross sectional view of the jaws (FIG. 23) of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 30 is a cross-sectional view of the jaws of the electrosurgical instrument having a feedback light, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;

FIG. 31 is a perspective view of an electrosurgical instrument having a feedback light in accordance with the present invention shown with an associated electrosurgical current generating unit and connector cable and associated biased power source and a connector cable;

FIG. 32 is an enlarged perspective view of the distal end of the electrosurgical instrument having a feedback light of FIG. 22, showing the jaw members in greater detail;

FIGS. 33

a-c are top (FIG. 33

a) and side (FIGS. 33

b and

c) views of the distal end of the jaws shown in FIG. 32, in partial cross-section to show the actuation mechanism for moving the jaws between the closed (FIG. 33

b) and open (FIG. 33

c) positions and the accompanying feedback light;

FIG. 34 illustrates an electrical schematic of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 35 illustrates an electrical schematic of an alternate embodiment of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 36 illustrates an electrical schematic of an alternate embodiment of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 37 is a cross sectional view of the jaws (FIG. 32) of an electrosurgical instrument having a feedback light in accordance with the present invention;

FIG. 38 is a cross-sectional view of the jaws of the electrosurgical instrument having a feedback light, with uncoagulated tissue disposed therebetween, showing the path of current flow between the two jaw members;

FIG. 39 is a perspective view of an electrosurgical instrument in accordance with the present invention shown with an associated electrosurgical current generating unit and connector cable;

FIG. 40 is a cross sectional view of the jaws of an electrosurgical instrument having a plurality of guard electrodes in accordance with the present invention;

FIG. 41 is a cross sectional view of the jaws of an electrosurgical instrument having a plurality of electrodes and a feedback device in accordance with the present invention;

FIG. 42 is a partial view of an electrosurgical instrument in accordance with the present invention having a knife lock out system;

FIG. 43 is a partial view of an electrosurgical instrument in accordance with the present invention having a knife lock out system;

FIG. 44 is a section view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;

FIG. 45 is a section view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;

FIG. 45

a is a perspective view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;

FIG. 46 is a perspective view of an alternate embodiment of a first and second moveable jaws comprising a tissue contacting surface in accordance with the present invention;

FIG. 47 is a perspective view of a jaw in accordance with the present invention, wherein the tissue dam is located at the distal end of the jaw;

FIG. 48 is a top view of the jaw illustrated in FIG. 47; and

FIG. 49 is a side view of the jaw illustrated in FIG.

47.

Claims

1. An electrosurgical apparatus comprising:

2. Apparatus of claim 1, wherein said feedback light is an LED.

3. The apparatus of claim 1, further comprising a biased power source, wherein said biased power source is coupled to said second circuit, wherein said biased power source delivers direct current through said second circuit.

4. The apparatus of claim 3, further comprising a first Zener diode, wherein said first Zener diode is positioned on said second circuit, wherein said first Zener diode has an established voltage threshold.

5. The apparatus of claim 4, further comprising a second Zener diode, wherein said second Zener diode is positioned on said second circuit.

6. The apparatus of claim 1, further comprising a feedback means for indicating when a first level of impedance has been reached.

7. An electrosurgical apparatus comprising:

8. The apparatus of claim 7, wherein said insulating material of said tissue contacting surface comprises a transparent material.

9. The apparatus of claim 8, wherein said insulating material houses said feedback light.

10. The apparatus of claim 7, further comprising a first Zener diode, wherein said first Zener diode is positioned along said second circuit.

11. The apparatus of claim 10, further comprising a second Zener diode, wherein said second Zener diode is positioned along said second circuit.

12. The apparatus of claim 10, wherein said first Zener diode is electrically biased by a battery.