Quantcast

Fabrication and transmission of optical polymer waveguide backplane for high - performance computers.

Research paper by Shuailong S Yang, Liu L Yang, Bin B Li, Fengguang F Luo, Xiaobo X Wang, Yuting Y Du

Indexed on: 15 May '20Published on: 15 May '20Published in: Optics express



Abstract

In this paper, a high-speed, large-capacity and compact optical backplane architecture for high-performance computers (HPC) is proposed and designed. The MT couplers is designed without additional mirror to divert the light from vertical cavity surface emitting laser (VCSEL) array by 90°. The light is then coupled into the optical waveguide through the MT. A bidirectional 8 channels polymer optical waveguide array with low insertion loss is designed and fabricated. The waveguides are embedded in the printed circuit board. We test the performance of 8 channels for the optical waveguide backplane. In the entire optical backplane, the averaged insertion loss of optical backplane with 50 μm input fiber is 1.62 dB with 850 nm VCSEL. The misalignment loss is 0.5 dB when the misalignment between waveguide and multi-mode fiber is 8.5 μm. Then, the transmission performances of 4 channels with different speed signals is demonstrated by off-line experiment. The optical backplane network can achieve 15 G data error-free transmission in the range of [-2 dBm, -10 dBm] received optical power (ROP). Based on VCSEL arrays, the optical interconnection network system can achieve 8 channels parallel signal transmission. In the optical backplane, the 10 Gbit / s data generated / processed by field programmable gate array (Xilinx Kintex-7) chips can realize error-free transmission. In large-capacity, high-speed parallel HPC, the designed optical backplane system can facilitate the establishment of a large number of parallel transmissions.