Quantcast

Fabrication and properties of MgF2 composite film modified with carbon nanotubes

Research paper by Feng-Ying Wang, Yue-Feng Zhu, Yin Jiang, Ren-Ping Zhang

Indexed on: 24 Feb '11Published on: 24 Feb '11Published in: Journal of Sol-Gel Science and Technology



Abstract

Carbon nanotubes (CNTs) were used to modify magnesium fluoride (MgF2) film via the spin coating technique. Nanoparticles of MgF2 were in situ synthesized on surfaces of CNTs resulted in the composites (MgF2–CNTs) by means of sol–gel technique. The sizes of the MgF2 nanoparticles in situ synthesized on CNTs surfaces could be modulated by processing the MgF2 sol–gel in different ways. The MgF2–CNTs as prepared was mixed with MgF2 sol to fabricate composite films (MgF2–CNTs/MgF2). Instead of adding directly CNTs, adding MgF2–CNTs, into MgF2 sol could effectively improve the dispersion of CNTs, avoid emergence of carbon clusters in the compsite film, decrease surface roughness of the film, and enhance the interaction between the CNTs and MgF2 matrix. In the paper, the MgF2 nanoparticles were in situ synthesized on the surfaces of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) respectively to prepare MgF2–SWCNTs/MgF2 and MgF2–MWCNTs/MgF2 composite films. Experimental results showed that the transparency of the MgF2–SWCNTs/MgF2 composite film was higher than that of the MgF2–MWCNTs/MgF2 film in the range of ultraviolet, visible and near-infrared wavelengths. The results showed SWCNTS could be an ideal reinforcement of MgF2 films to get good toughness, and retain its optical transmittance at the same time.