Quantcast

Fabricated nanoparticles: current status and potential phytotoxic threats.

Research paper by Tushar T Yadav, Alka A AA Mungray, Arvind K AK Mungray

Indexed on: 13 Mar '14Published on: 13 Mar '14Published in: Reviews of environmental contamination and toxicology



Abstract

Nanotechnology offers unique attributes to various industrial and consumer sectors, and has become a topic of high interest to scientific communities across the world. Our society has greatly benefitted from nanotechnology already, in that many products with novel properties and wide applicability have been developed and commercialized. However, the increased production and use of nanomaterials have raised concerns about the environmental fate and toxicological implications of nanoparticles and nanomaterials. Research has revealed that various nanomaterials may be hazardous to living organisms. Among biota, plants are widely exposed to released nanomaterials and are sensitive to their effects. The accumulation of nannmaterials in the environment is a potential threat, not only because of potential damage to plants hut also because nanoparticles may enter the food chain. Although the literature that addresses the safety of nanoproducts is growing, little is known about the mechanisms by which these materials produce toxicity on natural species, including humans. In this paper, we have reviewed the literature relevant to what phytotoxic impact fabricated nanoparticles (e.g., carbon nanotubes, metallic and metal oxide nanoparticles, and certain other nanomaterials) have on plants. Nanoparticles produce several effects on plant physiology and morphology. Nanoparticles are known to affect root structure, seed germination, and cellular metabolism. Nanoparticles inhibit growth, induce oxidative stress, morphogenetic abnormalities and produce clastogenic disturbances in several plant species. The size, shape and surface coating of NPs play an important role in determining their level of toxicity. Of course, the dose, route of administration, type of dispersion media, and environmental exposure also contribute to how toxic nanoparticles are to plants. Currently, nanotoxicity studies are only in their initial phases of development and more research will be required to identify the actual threat nanoproducts pose to the plant system. To date, data show that there is a large variation in the phytotoxicity caused by different NPs. Moreover, the studies conducted thus far have mostly relied on microscopy to detect effects. Studies that incorporate measures and analyses undertaken with more modern tools are needed. Among new data that are most urgently needed on NPs is how fabricated NPs behave once released into the environment, and how exposure to them may affect plant resistance, metabolic pathways, and plant genetic responses. In this review, we have attempted to collect, present and summarize recent findings from the literature on nanoparticle toxicity in plants. To strengthen the analysis, we propose a scheme for accessing NP toxicity. We also recommend how the potential challenges presented by increased production and release of NPs should be addressed. It is our belief and recommendation that every nanomaterial-based product be subjected to appropriate toxicity and associated assessment before being commercialized.