Exploitation of detergent thermodynamics in the direct solubilization of myelin membrane proteins for two-dimensional gel electrophoresis for proteomic analysis.

Research paper by Sreepriya S Nair, Tessy T Xavier, Madathiparambil Kumaran Satheesh MK Kumar, Sharmistha S Saha, Krishnakumar N KN Menon

Indexed on: 22 Nov '11Published on: 22 Nov '11Published in: ELECTROPHORESIS


Performing 2-DE of lipid-rich multilamellar membranes like myelin is a cumbersome task. However, for understanding its molecular organization and changes during diseases, identification of proteins of myelin is essential. Although the 2-D-proteomic approach of myelin has been employed to understand the myelin proteome, representation of myelin proteins in its entirety is still a challenge. 2-DE profiling of myelin proteins is very important for the detection of immuno-reactivity to myelin proteins from various biological fluids following Western blotting in diseases like multiple sclerosis. Here we developed a novel approach by exploiting the thermodynamic principles behind detergent-mediated solubilization of myelin membranes without any conventional processing of myelin involving precipitation of myelin proteins. We show that the addition of myelin to ASB-14-4 resulted in significant increase in protein representation of myelin in 2-DE compared with the addition of ASB-14-4 to myelin. Moreover, the number and resolution of spots are significantly higher in myelin to ASB-14-4 strategy than other strategies of myelin sample processing such as ASB-14-4 to myelin or ethanol or acetone or methanol-ammonium acetate precipitation of myelin proteins. In addition, the step involves no precipitation that selective removal of any proteins as a result of precipitation is nil and a qualitative representation of myelin proteins in a 2-D gel is achieved.

More like this: