Quantcast

Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems.

Research paper by Gunnar G Schmitz, Christof C Hättig, David P DP Tew

Indexed on: 13 Sep '14Published on: 13 Sep '14Published in: Physical Chemistry Chemical Physics



Abstract

We present our current progress on the combination of explicit electron correlation with the pair natural orbital (PNO) representation. In particular we show cubic scaling PNO-MP2-F12, and PNO-CCSD[F12] implementations. The PNOs are constructed using a hybrid scheme, where the PNOs are generated in a truncated doubles space, spanned by orbital specific virtuals obtained using an iterative eigenvector algorithm. We demonstrate the performance of our implementation through calculations on a series of glycine chains. The accuracy of the local approximations is assessed using the S66 benchmark set, and we report for the first time explicitly correlated CCSD results for the whole set and improved estimates for the CCSD/CBS limits. For several dimers the PNO-CCSD[F12] calculations are more accurate than the current reference values. Additionally, we present pilot applications of our PNO-CCSD[F12] code to host-guest interactions in a cluster model for zeolite H-ZSM-5 and in a calix[4]arene-water complex.