# Explicit formulas for the cohomology of the elementary abelian
$p$-groups

Research paper by **Constantin-Nicolae Beli**

Indexed on: **26 May '20**Published on: **24 May '20**Published in: **arXiv - Mathematics - Group Theory**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

Let $G$ be an elementary abelian $p$-group, $G\cong{\mathbb F}_p^r$ and let
$s_1,\ldots,s_r$ be a basis of $G$ over ${\mathbb F}_p$.
Let $V$ be the dual of $G$, $V={\rm Hom}(G,{\mathbb F}_p)=H^1(G,{\mathbb
F}_p)$. Let $x_1,\ldots,x_r$ be the basis of $V$ over ${\mathbb F}_p$ which is
dual to the basis $s_1,\ldots,s_r$ of $G$. For $1\leq i\leq r$ we denote by
$y_i=\beta (x_i)\in H^2(G,{\mathbb F}_p)$, where $\beta :H^1(G,{\mathbb
F}_p)\to H^2(G,{\mathbb F}_p)$ is the connecting Bockstein map.
The ring $(H^*(G,{\mathbb F}_p),+,\cup )$ satisfies $$H^*(G,{\mathbb
F}_p)\cong\begin{cases}{\mathbb F}_p[x_1,\ldots,x_r]&p=2\\ \Lambda
(x_1,\ldots,x_r)\otimes{\mathbb F}_p[y_1,\ldots,y_r]&p>2\end{cases}.$$
When $p=2$ the isomorphism $\tau :{\mathbb F}_p[x_1,\ldots,x_r]\to
H^*(G,{\mathbb F}_p)$ is given by $x_{i_1}\cdots x_{i_n}\mapsto
x_{i_1}\cup\cdots\cup x_{i_n}\in H^n(G,{\mathbb F}_p)$. When $p>3$ the
isomorphism $\tau :\Lambda (x_1,\ldots,x_r)\otimes{\mathbb
F}_p[y_1,\ldots,y_r]\to H^*(G,{\mathbb F}_p)$ is given by
$x_{i_1}\wedge\cdots\wedge x_{i_l}\otimes y_{j_1}\cdots y_{j_k}\mapsto
x_{i_1}\cup\cdots\cup x_{i_l}\cup y_{j_1}\cup\cdots\cup y_{j_k}\in
H^{2k+l}(G,{\mathbb F}_p)$.
In this paper we give explicit formulas for the inverse isomorphism
$\tau^{-1}$. The elements of $H^*(G,{\mathbb F}_p)$ are written in terms of
normalized cochains. During the proof we use an alternative way to describe the
normalized cochains. Namely, for every $G$-module $M$ we have
$C^n(G,M)\cong{\rm Hom}(T^n({\mathcal I}),M)$, where ${\mathcal I}$ is the
augmented ideal of $G$, ${\mathcal I}=\ker\varepsilon :{\mathbb
Z}[G]\to{\mathbb Z}$.