Quantcast

Experiments on Solute Transport in Aggregated Porous Media: Are Diffusions Within Aggregates and Hydrodynamic Dispersion Independent?

Research paper by F. Lafolie, Ch. Hayot, D. Schweich

Indexed on: 01 Dec '97Published on: 01 Dec '97Published in: Transport in Porous Media



Abstract

Two region models for solute transport in porous media assume that hydrodynamic dispersion in mobile water and solute diffusion within immobile water regions are independent. Experimental and theoretical results for transport through a macropore indicate that hydrodynamic dispersion and solute exchange are interdependent. Experiments were carried out to investigate this problem for a column packed with spherical porous aggregates. The effective diffusion coefficient of a tracer within the agreggates was determined from specific experiments. The dispersivity of the bed was determined from experiments carried out with a column filled with nonporous beads. We took advantage of the dependence of hydrodynamic dispersion on density ratios between the invading and displaced solutions to obtain a set of breakthrough curves corresponding to situations where the diffusion coefficient remains constant, whereas the dispersivity varies. Simulations reproduce correctly the experiments. Small discrepancies are noted that can be corrected either by increasing the dispersion coefficient or by fitting the external mass transfer coefficient. Increased dispersion coefficients probably reveal a modification of Taylor dispersion due to solute exchange. The fitted external mass transfer coefficients are close to the values obtained with classical correlations of the chemical engineering literature.