Quantcast

Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”

Research paper by Amit Kumar, Avadhesh Yadav

Indexed on: 27 Apr '16Published on: 26 Apr '16Published in: Environment, Development and Sustainability



Abstract

A solar-powered composite desiccant cooling system has been experimentally investigated. It consists of evacuated tube solar water heater, composite desiccant bed heat exchanger (CDBHE), direct evaporative cooling unit and cooling tower. The composite desiccant material has been synthesized by using iron mesh and jute layer impregnated with calcium chloride solution, and this composite desiccant is placed in shell- and tube-type heat exchanger to make CDBHE. In this desiccant cooling system, the evacuated tube solar water heater is used to produce required hot water for regeneration of composite desiccant material. A cooling tower is used to produce cooling water which is pumped into CDBHE during dehumidification process to remove heat of adsorption. Direct evaporative cooling unit is used to cool the outlet process air of CDBHE. It has been found that the average dehumidification rate increases by 54.1 % when using circulating cooling water. The COPth of desiccant cooling system has been found to be 0.46 with a cooling capacity of 353.8 W.