Quantcast

Excellent fluoride decontamination and antibacterial efficacy of Fe-Ca-Zr hybrid metal oxide nanomaterial.

Research paper by Ankita A Dhillon, Manjula M Nair, Suresh K SK Bhargava, Dinesh D Kumar

Indexed on: 22 Jul '15Published on: 22 Jul '15Published in: Journal of Colloid and Interface Science



Abstract

The aim of the present study is to develop an efficient nanomaterial for the removal of fluoride and disinfection of harmful bacteria in order to make water potable according to Environmental Protection Agency (EPA) guidelines. Hydrous hybrid Fe-Ca-Zr oxide nanoadsorbent presented a marked fluoride adsorption capacity of 250 mg/g at pH 7.0 (±0.1) much greater than other commercially accessible adsorbents for both synthetic and real water samples. The adsorption isotherms, Freundlich and Dubinin-Radushkevich (D-R) fitted reasonably well fine having high coefficient of regression values. The adsorption of fluoride was established well using pseudo-second-order kinetics. The fluoride loaded adsorbent was efficiently regenerated by using an alkali solution. Interestingly, the developed nanomaterial not only showed excellent fluoride removal capacity but also demonstrated good antibacterial activity against Escherichia coli with IC50 (25 μg/mL).