Quantcast

Examination of CO2-SO2 solubility in water by SAFT1. Implications for CO2 transport and storage.

Research paper by R R Miri, P P Aagaard, H H Hellevang

Indexed on: 16 Jul '14Published on: 16 Jul '14Published in: Journal of Physical Chemistry B



Abstract

Removal of toxic gases like SO2 by cosequestration with CO2 in deep saline aquifers is a very attractive suggestion from environmental, human health and economic point of view. Examination of feasibility of this technique and forecasting the underlying fluid-rock interactions requires precise knowledge about the phase equilibria of the ternary mixture of SO2-CO2-H2O at conditions relevant to carbon capture and storage (CCS). In this study, a molecular-based statistical association fluid theory (SAFT1) model is applied to estimate the phase equilibria and aqueous phase density of mixtures. The molecules are modeled as associating segments while self-association is not allowed. The model is tested for different SO2 concentrations and for temperatures and pressures varying between 30-100 °C and ∼6-30 MPa, respectively. Comparison of the results of this model against the available experimental data of binary systems demonstrates the capability of this equation of state, although, in contrast to the previous works, no temperature dependent binary interaction coefficient is applied. The results show that the total solubility of SO2 + CO2 in water varies exponentially with respect to SO2 concentrations, i.e., at low concentrations of SO2, total changes in solubility of the CO2 in water is negligible.